

George C. Marshall Space Flight Center
Materials, Processes and Manufacturing Department
Environmental Effects Group

LIFE CYCLE TESTS ON A HOLLOW CATHODE BASED PLASMA CONTACTOR

Jason Vaughn
Todd Schneider
Marshall Space Flight Center
Huntsville, AL 35812

George C. Marshall Space Flight Center Materials, Processes and Manufacturing Department Environmental Effects Group

ProSEDS Flight Experiment

- Secondary Payload Attached to Delta II Second Stage.
- Demonstrate Propellant-less Propulsion Technology by De-orbiting the 2nd Stage
 - In ~ 2 Weeks As Opposed to 6 Months
- Tether Characteristics
 - 5 Km Long Semi-bare Aluminum Tether
 - 10 Km Spectra (UHMWPE) Ballast Tether
 - Maximum Estimated Potential, 1560 V.
- Current Flow Through Tether Produced Using a Hollow Cathode Based Plasma Contactor.
- Hollow Cathode Plasma Contactor (HCPC) Designed and Built by Electric Propulsion Laboratory (EPL) Monument, CO,

George C. Marshall Space Flight Center Materials, Processes and Manufacturing Department Environmental Effects Group

ProSEDS Standard Operating Modes

Continuously

George C. Marshall Space Flight Center Materials, Processes and Manufacturing Department Environmental Effects Group

HCPC Specs for ProSEDS

- Developed by Electric Propulsion Laboratory (EPL)
- HCPC Uses 250 Series Hollow Cathode (OD 0.25")
- 2 Sccm Xenon Flowrate
- 1 Hr on Orbit Conditioning Cycle (50 W)
- 150 Sec First Time Cold Start (55 W)
- 0.1 to 10 A Electron Current Emission (36 W to 20 W)

George C. Marshall Space Flight Center Materials, Processes and Manufacturing Department Environmental Effects Group

ProSEDS HCPC Calculated Cycles During Mission

- Primary Battery
 - First Seven Orbits on Primary Battery
 - ProSEDS Employs the 60 S Cycle
 - HCPC on 50% of Time
 - 630 Cycles During This Period
- Secondary Battery
 - Remainder of Life From Seven Orbits for 12 Days
 - ProSEDS Employs the 80 S Cycle, 70 % of Time
 - ProSEDS Will Be in Secondary Battery Recovery, 30% With No Cycling
 - HCPC Cycling 70% of Time
 - Total Cycles for This Period 8,741 Cycles
- Total Cycles for ProSEDS Mission
 - Total Cycles **9,371 Cycles**
- Test HCPC Unit for 10,000 Cycles

HCPC Engineering Test Pallet Description

- HCPC Engineering Test Pallet Hollow Cathode From the Same Lot As Flight Unit
 - 0.25" OD
- Electrical System
 - DC/DC Converters Where the Same As the Flight Unit
 - Thermistors Were Replaced With Resistors
- Gas System
 - Gas Tank Same Volume but Made of SS. Flight Version Made of Aluminum.
 - Gas Regulator Same As Flight Version.
 - Gas Solenoid Valve Same As Flight Version
 - Main Gas Valve Is a Hand Valve When in Flight the Valve Is Latch Valve.
- Enclosure Twice As Large As Flight Unit

George C. Marshall Space Flight Center Materials, Processes and Manufacturing Department Environmental Effects Group

HCPC Cycle Test Configuration

George C. Marshall Space Flight Center Materials, Processes and Manufacturing Department Environmental Effects Group

HCPC Conditioning Cycle

-- Heater Voltage

George C. Marshall Space Flight Center Materials, Processes and Manufacturing Department Environmental Effects Group

Typical First Time Cold Start

George C. Marshall Space Flight Center Materials, Processes and Manufacturing Department Environmental Effects Group

Typical 60 s Cycle

George C. Marshall Space Flight Center Materials, Processes and Manufacturing Department Environmental Effects Group

HCPC Life Test

Keeper Voltage

George C. Marshall Space Flight Center Materials, Processes and Manufacturing Department Environmental Effects Group

HCPC Life Test

Coupling Voltage

George C. Marshall Space Flight Center Materials, Processes and Manufacturing Department Environmental Effects Group

HCPC Life Test

Xenon Pressure in Tank

HCPC Cycle Test Results

- Began Test on Jan. 12, 2000 and Ended Test on Jan. 21, 2000.
- HCPC Engineering Test Pallet Completed 10,095 Cycles.
- Measured a Slight Decrease Between Initial and Final Keeper Voltage Data Over the Range of Emission Currents
- Encountered Problems With Keeping System Cool Early in the Test.
 - HCPC Has A Temperature Limit on the DC/DC Converters. This
 Temperature Was Exceeded Early in the Test Because the Thermal Interface
 Between HCPC and Cooling Plate Was Not Sufficient.